Java:

Learning to Program with Robots

Chapter 03: Developing Methods

Chapter Objectives

After studying this chapter, you should be able to:
e Use stepwise refinement to implement long or complex methods.
e Explain the advantages to using stepwise refinement.

e Use pseudocode to help design and reason about methods before
code Is written.

e Use multiple objects to solve a problem.
e Use inheritance to reduce duplication of code and increase flexibility.

e Explain why some methods should not be available to all clients and
how to appropriately hide them.

An algorithm is a finite set of step-by-step instructions that specifies a
process of moving from the initial situation to the final situation.

Everyday examples of algorithms:

e From a bottle of shampoo:
wet hair with warm water
gently work in the first application of shampoo
rinse thoroughly and repeat

e From a spool of dental floss:
wrap dental floss around your middle fingers
firmly grasp floss with your index fingers

forming a C-shape, carefully slide the floss up and down between
your tooth and gum line

gently slide the floss in between both sides of your teeth and
repeat until finished

3.1: Algorithms and Problem Solving

3.1. Characteristics of Good Algorithms

Good algorithms are:
e correct
e easy to read and understand
e casy to debug
e casy to modify to solve variations of the original task
o efficient

A computer program is one way of writing an algorithm so that it is
precise enough to be executed by a computer.

e Stepwise refinement is a method .
of constructing algorithms (and ~ PAIgOrithm
therefore computer programs and Sub-algorithm 1
the methods they use).

Sub-sub-algorithm 1.1

e It decomposes a complex
algorithm into smaller, simpler

Sub-sub-algorithm 1.2

3.2. Stepwise Refinement

algorithms. Sub-algorithm 2

e Construct sub-algorithms the Sub-sub-algorithm 2.1
same way (decompose into SSS-algorithm 2.1.1
smaller, simpler algorithms). SSSalgorem 2.L.2
Do th_e same for sub-sub- ATT———
algorithms. _

o Sub-sub-algorithm 2.2
o After enough decomposition,

Sub-sub-algorithm 2.3

the (sub)-algorithms become
simple enough to solve using Sub-algorithm 3
tools that are already

available (e.g. move, turnLeft).

You’ve taken a job delivering flyers for a local advertising agency. A
robot to help with the work sure would be nice... The route includes
all the houses shown below.

1 11 1m0 11
-----------I I-----------I

Initial Situation Final Situation

-
@
+—
o
—
o
0
&)
A
=
)
O
e
| -
al
>
©
)
e
p]
)
n
M
O

2]
7
g
]
1]
1

It Is assumed the robot will stay off the green grass as much as
possible.

Import becker.robots.*;

[** Program a robot to deliver flyers.
* @author Byron Weber Becker */

public class DeliverFlyers

{

public static void main(String[] args)

{

/I Set up the route with the houses. Create a DeliveryBot to do the work, complete with
Il flyers. (The Route class extends City and therefore is a kind of City.)

Route route = new Route();
DeliveryBot karel = new DeliveryBot(route, 0, 0, Direction.EAST, 48);

Case Study: Main method

Il Instruct the robot to deliver the flyers.
karel.deliverFlyers();

Case Study: Overall Strategy

What path should the DeliveryBot follow? One option is shown
below. Not shown is actually going up to each house to deliver the
flyer and then returning to the road.

0 1 2 3 4 5 B 7 8 a 10 11
A R 4 B B B B R 3 EH B

0

How can this complex
algorithm
(deliverFlyers) be :
decomposed into ;
smaller, simpler sub-
algorithms?

1

4

5
G

7

8
4

10

11

Case Study: Deliver Flyers

Import becker.robots.?;
/** A robot to deliver flyers on a prescribed route.
* @author Byron Weber Becker */

public class DeliveryBot extends RobotSE

{ I Construct a robot to deliver flyers. */
public DeliveryBot(City aCity, int aStr, int anAve, Direction aDir, int numThings)
{ super(aCity, aStr, anAve, aDir, numThings);

}

[** Deliver flyers to all the houses on
* a prescribed route. */

public void deliverFlyers()

{ this.deliverOneAvenue();
this.turnRight();
this.move();
this.deliverOneAvenue();

}

[**Deliver flyers to one avenue (plus the
* side streets).

public void deliverOneAvenue()
{ 1/ Stub to permit compilation.

}

Case Study: Deliver One Avenue

Import becker.robots.?;
public class DeliveryBot extends RobotSE
{ public DeliveryBot...

public void deliverFlyers()

{ this.deliverOneAvenue();
this.turnRight();
this.move();
this.deliverOneAvenue();

}

public void deliverOneAvenue()

{ this.deliverOneSide();
this.goToOtherSide();
this.deliverOneSide();

}

public void deliverOneSide()

{
}

public void goToOtherSide()...

.

[y]

Case Study: Deliver One Side

Import becker.robots.?;
public class DeliveryBot extends RobotSE
{ public DeliveryBot...

public void deliverFlyers()...

public void deliverOneAvenue()

{ this.deliverOneSide();
this.goToOtherSide();
this.deliverOneSide();

}

public void deliverOneSide()

{ this.deliverBlock();
this.crossStreet();
this.deliverBlock();

} B
public void deliverBlock()...

public void crossStreet()...
public void goToOtherSide()...

=
=
(=]

Case Study: Deliver Block

import becker.robots.*;
public class DeliveryBot extends RobotSE
{ public DeliveryBot...

public void deliverFlyers()...

public void deliverOneAvenue()...

public void deliverOneSide()

{ this.deliverBlock();
this.crossStreet();
this.deliverBlock();

}

public void deliverBlock()

{ this.deliverHouse();
this.deliverHouse();
this.goAroundCorner();
this.deliverHouse();
this.deliverHouse();
this.deliverHouse();
this.deliverLastHouse();

}

public void deliverHouse()...

public void goAroundCorner()...

public void deliverLastHouse()...
public void crossStreet()...
public void goToOtherSide()...

Case Study: Deliver House

import becker.robots.*;
public class DeliveryBot extends RobotSE

{

public DeliveryBot...

public void deliverFlyers()...
public void deliverOneAvenue()...
public void deliverOneSide()...

public void deliverBlock()

{ this.deliverHouse();
this.deliverHouse();
this.goAroundCorner();
this.deliverHouse();
this.deliverHouse();
this.deliverHouse();
this.deliverLastHouse();

}

public void deliverHouse()

{ this.turnRight();
this.move();
this.putThing();
this.turnAround();
this.move();
this.turnRight();
this.move();

}

public void goAroundCorner()...

public void deliverLastHouse()...

Nnithlir \inid ArraceCtrant/)

Case Study: Go Around Corner; Deliver Last

import becker.robots.*;
public class DeliveryBot extends RobotSE

{

public DeliveryBot...

public void deliverFlyers()...

public void deliverOneAvenue()...

public void deliverOneSide()...
public void deliverBlock()

{ this.deliverHouse(); Il x2
this.goAroundCorner();
this.deliverHouse(); Il X3
this.deliverLastHouse();

}

public void deliverHouse()...

public void goAroundCorner()

{ this.turnRight();
this.move();
this.move();

}

public void deliverLastHouse()

{ this.goAroundCorner();
this.turnRight();
this.move();
this.putThing();
this.turnAround();
this.move();

}

Nnithlic vonid crnceceStraemt/)

Case Study: Finishing Up

import becker.robots.*;
public class DeliveryBot extends RobotSE

{

public DeliveryBot...

public void deliverFlyers()...
public void deliverOneAvenue()...
public void deliverOneSide()...
public void deliverBlock()...
public void deliverHouse()...
public void goAroundCorner()...
public void deliverLastHouse()...

[** Cross street and position to deliver next block. */
public void crossStreet()
{ this.move();
this.turnLeft();
}

[** Go to the other side of the Avenue. We're on a side
* street and need to go to the opposite side street. */

public void goToOtherSide()
{ this.turnLeft();
this.move();
this.move();
this.move();
this.move();
this.move();
this.turnAround();

n 1 2 a 4 5
Ul U B i ..

]
]

3.2.8: Summary of Stepwise Refinement (1/2)

Stepwise refinement decomposes a complex algorithm (implemented
as a method such as deliverFliers) into simpler sub-algorithms
(implemented as helper methods such as deliverOneAvenue).

One view: stepwise refinement is an approach to bridging the gap
between the method we need (deliverFliers) and the methods we
already have (move, turnLeft, putThing, etc.).

deliverFliers()

putThing() move() turnRight() turnAround () turnl.eft()

3.2.8. Summary of Stepwise Refinement (2/2)

deliverFliers() A
1
l l
deliverOneAvenue() goToOtherSide()
i
— ! ! oe
o deliverBlock() crossStreet() 2
S | =
'U ®,
= — ‘ — g
deliverHouse() goAroundCorner() deliverLastHouse()
I]]
|
v L]]

putThing() move() turnRight() turnArouﬁd() mrnl-‘ef';()

Design: Start at the top and work down
“top-down design” aka “stepwise refinement”
Implementation: Similar (top-down implementation)
Sometimes work bottom-up

Programs developed using stepwise refinement are more likely to be:
e Easy to understand
e Free of programming errors
e Easy to test and debug
e Easy to modify

Why?
e People can remember only a limited amount of detail

e Stepwise refinement imposes a structure on the problem, keeping
related parts together in a method

e Identifying these methods with a descriptive name helps us think at
a higher level of abstraction

3.3: Advantages of Stepwise Refinement

Focus on the algorithm instead of the program implementing it by
using pseudocode

e Combines naturalness of natural language (such as English) with
the structure of a programming language

e Becomes more important when programs make decisions (next
lesson!)

3.4: Pseudocode

Example:
deliver fliers to each house up to the corner
turn the corner
deliver fliers to each house up to the corner
turn the corner
deliver to the last house

3.4. Advantages of Pseudocode

Advantages include:

e Pseudocode helps us think more abstractly, allowing us to ignore
many irrelevant details.

e Pseudocode allows us to trace our programs very early in
development.

e Pseudocode can provide a common language on a development
team, even with non-technical users.

e Algorithms expressed in pseudocode can be implemented in a
variety of programming languages.

3.5.1: Using Multiple Robots (1/2)

11
N N N N N

EEEEmn
Initial Situation

‘TEaaEaeeEEEEEas
During Execution

3.5.1: Using Multiple Robots (2/2)

Import becker.robots.*;

public class DeliverFlyers
{ public static void main(String[] args)

{

Route route = new Route();

DeliveryBot dbl = new DeliveryBot(route, O, O, Direction.EAST, 6);
DeliveryBot db2 = new DeliveryBot(route, 6, O, Direction.EAST, 6);
DeliveryBot db3 = new DeliveryBot(route, 5, 5, Direction.WEST, 6);
DeliveryBot db4 = new DeliveryBot(route, 11, 5, Direction.WEST, 6);
DeliveryBot db5 = new DeliveryBot(route, 0, 6, Direction.EAST, 6);
DeliveryBot db6 = new DeliveryBot(route, 6, 6, Direction.EAST, 6);
DeliveryBot db7 = new DeliveryBot(route, 5, 11, Direction.WEST, 6);
DeliveryBot db8 = new DeliveryBot(route, 11, 11, Direction.WEST, 6);

db1l.deliverBlock();
db2.deliverBlock();
db3.deliverBlock();
db4.deliverBlock();
db5.deliverBlock();
db6.deliverBlock();
db7.deliverBlock();
db8.deliverBlock();

B

7 a g 1m 1 0 1 2 3 4 5 B 7 8] 1m N
A N N N B u.-----------.
| - -

5 - -
IEONEEEEEEEN

4]
T O O
g
9
10
O O

11
5 B B N B BN B B B B B B

o1 2 3 4 5
n-----

b2

[E%}

3.5.2: Using Threads

[i=]

—
i

Initial Situation During Execution

11
' N N N N N N

3.5.2: Changes to DeliveryBot

Import becker.robots.*;

/** A robot to deliver flyers on a prescribed route.
* @author Byron Weber Becker */

public class DeliveryBot extends RobotSE implements Runnable

{

[** Construct a robot to deliver flyers. */
public DeliveryBot(City aCity, int aStr, int anAve, Direction aDir, int numFlyers)
{ super(aCity, aStr, anAve, aDir, numFlyers);

}

/l The run method contains the code to be executed within the thread.
public void run()
{ this.deliverBlock();

}

/** Deliver flyers to one block of houses, including the side streets. */
public void deliverBlock()
{ this.deliverHouse();

this.deliverHouse();

3.5.2: Changes to main

Import becker.robots.*;

public class DeliverFlyers

{

public static void main(String[] args)

{ /| Same as before
Route route = new Route();
DeliveryBot dbl = new DeliveryBot(route, O, O, Direction.EAST, 6);
DeliveryBot db2 = new DeliveryBot(route, 6, O, Direction.EAST, 6);

/[Set up to run dbl and db2 in parrallel
Thread db1Thread = new Thread(db1l);
Thread db2Thread = new Thread(db?2);

/[Start executing the code in run()
db1Thread.start();
db2Thread.start();

3.5.2: How? (1/2)

dbl.deliverBlock();

SN

Y

db2._.deliverBlock();

this.turnRight();

Y

this.move();

¥

this.putThingQ);

Y

this.turnAround();

¥

this.move();

Y

(and so on...)

SN

this.turnRight();

Y

this.move();

¥

this.putThing(Q;

Y

this.turnAround();

¥

this.move();

Y

(and so on...)

3.5.2: How? (2/2)

main’s thread db1’s thread db2’s thread
dblThread.start();
this.turnRight();
this.move();
o
db2Thread.start();
this_.turnRight();
v this.move();
v this.putThing(Q;
thread terminates v
this.turnAround(); Y
this.putThing(Q;
this.turnAround();
Y (and so on...)
(and so on...) ¢

\l/ /\thread terminates

thread terminates

3.5.3: Factoring Out Differences

TraverseRouteBot

TraverseRouteBot(...)

vold traverseRoute()

void traverseOneAvenue()
void traverseBlock()

void visitHouse()

void goAroundCorner()
void visitl.astHouse()

vold crossStreet()

vold goToOtherSide()

vold action()

JZAN

DeliveryBot CollectionBot

DeliveryBot(...) DeliveryBot(...)

void action() void action()

3.6: Private and Protected Methods (1/2)

deliverLastHouse Is one of the helper methods in DeliveryBot:

[** The last house is special because we don't need to move
* on to the next house. */

public void deliverLastHouse()
{ this.goAroundCorner();
this.turnRight();
this.move();
this.putThing();
this.turnAround();
this.move();

—

Should clients be able to call it? For example:

public static void main(String[] args)
{ City route = new City();

DeliveryBot karel = new DeliveryBot(...);

karel.deliverLastHouse();

}

3.6: Private and Protected Methods (2/2)

public methods:
e public void deliverFliers()

e May be called from any method (eg: main), including other
methods within the class and subclasses.

e Should be used for methods explicitly designed as one of the
classes’ services.

protected methods:
e protected void deliverOneSide()
e May be called from any method in the same class or a subclass.

e Often used for helper methods that might be overridden in a
subclass.

private methods:
e private void deliverLastHouse()
e May only be called from methods within the same class.
e The usual case, unless there is a reason for public or protected.

3.8.1: The Helper Method Pattern

Name: Helper Method

Context: You have a long or complex method and want your code to
be easy to develop, test, and modify.

Solution:

ook for a logical decomposition, putting each part into a helper
method. Use a pattern such as Parameterless Command to
Implement the helper method.

For example:

public void deliverFliers()

{ this.deliverOneAvenue(); //call a helper method
this.turnRight();
this.move();
this.deliverOneAvenue(); // call a helper method

}
Consequences: Methods are easier to develop, understand, modify.

Related Patterns: Almost identical to Parameterless Command and
patterns to appear in later chapters. The difference is in the context
and motivation.

3.8.2: The Multiple Threads Pattern

Name: Multiple Threads
Context: Multiple objects need to carry out tasks “simultaneously.”

Solution: Start each task in its own thread of control.
public class «className» extends «superclassName»
Implements Runnable

{

public void run()
{ «statements to execute Inside a separate thread»

}
}

«className» «runnableObject» = «className»new (...);
Thread «threadName» = new Thread(«runnableObject»);
«threadName».start();

Conseqguences: Execution of two or more threads can be interleaved.
If the threads can interfere with each other, many problems resulit.

Related Patterns: Java Program, Extended Class, Object
Instantiation, Method Invocation, etc.

3.8.3: The Template Method Pattern

Name: Template Method
Context: Several tasks are very similar, resulting in duplicate code.

Solution: Factor out the duplicate code into a common superclass.
Provide methods to override to encode the differences between the
tasks.

Consequences: Writing common code once helps reduce the effort
required to write, debug, and maintain the code.

Spreading the code over two or more classes makes it more difficult to
understand.

Related Patterns: This pattern is a specialization of the Extended
Class pattern.

Application: Drawing for Hangman

The game of Hangman uses a drawing with a person hanging from a
gallows as a way to keep track of a person’s progress in guessing a
word or phrase.

Extend JComponent to
create a new kind of Als -(olx|

component that draws this
scene. Override

intC to do th
gci‘itllflgl dorng\?icr)\g.enLthg stgpvxfise ...“.....
AR NN

refinement to make your
code easier to understand, .
write, and debug.

A 10x10 grid is shown here
to aid the drawing process. It

]
should not appear in the finaln“....
duct. Make th '
rawing sooczoopiets. | N NN 20NN

Application: The main method

Import javax.swing.*;

[** Display an image of a person hanging from a gallows, as for the game of Hangman.

* @author Byron Weber Becker */
public class Hangman
{
public static void main(String[] args)
{ JFrame f = new JFrame();
JPanel contents = new JPanel();
GallowsView view = new GallowsView();

contents.add(view);

f.setContentPane(contents);

f.setTitle("Hangman");
f.setDefaultCloseOperation(JFrame.EXIT _ON_CLOSE);
f.pack();

f.setVisible(true);

Import javax.swing.*;
Import java.awt.?*;

/** Draw the gallows for Hangman..
@author Byron Weber Becker */

public class GallowsView extends JComponent
{

[** Construct the specialized component. */
public GallowsView()

{ super();
this.setPreferredSize(new Dimension(500,500));

}

[** Paint the component. This is called automatically by the system.
* @param g The graphics context for painting. */

public void paintComponent(Graphics g)
{ super.paintComponent(qg);

}

Application: Extending JComponent

Application: Decomposing paintComponent

import javax.swing.*;
import java.awt.*;

public class GallowsView extends JComponent

{

public GallowsView()...

public void paintComponent(Graphics g)

{ super.paintComponent(qg);
this.drawBackground(g);
this.drawGallows(g);
this.drawPerson(g);

}

private void drawBackground(Graphics Q)

{

}

private void drawGallows(Graphics g)
{

}

private void drawPerson(Graphics Q)
{

}

}

import javax.swing.*;
import java.awt.*;

public class GallowsView extends JComponent

{
public GallowsView()... /[done
public void paintComponent(Graphics g)... /[done

[** Draw the background with sky, mountains, sun, etc.
@param g The graphics context. */

private void drawBackground(Graphics Q)
{ g.setColor(Color.BLUE); I sky
g.fillRect(0, 0, 500, 350);

g.setColor(Color.YELLOW);, /l sun
g.fillOval(150, 100, 100, 100);

g.setColor(Color.GREEN); / foreground grass
g.fillRect(0, 350, 500, 250);

Implementing drawBackground

this.drawMountain(g);

}

private void drawMountain(Graphics g)

{
}

private void drawGallows()...

Application:

import javax.swing.*;
import java.awt.*;

public class GallowsView extends JComponent

{
public GallowsView()... /[done
public void paintComponent(Graphics g)... /[done
private void drawBackground(Graphics g)... //done

private void drawMountain(Graphics g)

{ g.setColor(Color.GREEN.darker());
Polygon m = new Polygon();
m.addPoint(50, 350);
m.addPoint(150, 100);
m.addPoint(200, 150);
m.addPoint(250, 50);
m.addPoint(400, 350);
m.addPoint(50, 350);
g.fillPolygon(m);

}

private void drawGallows(Graphics g)...
private void drawPerson(Graphics g)...

}

Implementing drawMountain

Application:

Implementing drawGallows

Application:

import javax.swing.*;
import java.awt.*;

public class GallowsView extends JComponent

{

—

public GallowsView()...

public void paintComponent(Graphics g)...
private void drawBackground(Graphics g)...
private void drawMountain(Graphics g)...

private void drawGallows(Graphics Q)
{ g.setColor(Color.BLACK);

g.fillRect(100, 495, 300, 5); Il base
g.fillRect(350, 150, 5, 350); I/ upright
g.fillRect(250, 145, 105, 5); /I top
g.fillRect(250, 150, 4, 25); Il rope

}

private void drawPerson(Graphics Q)

{
}

/[l done
/[l done
/l done
/I done

Application: Decomposing drawPerson

import javax.swing.*;
import java.awt.*;

public class GallowsView extends JComponent

{

public GallowsView()... /[done
public void paintComponent(Graphics g)... /[done
private void drawBackground(Graphics g)... /[done
private void drawMountain(Graphics g)... /[done
private void drawGallows(Graphics Q)... I/l done

private void drawPerson(Graphics Q)
{ g.setColor(Color.WHITE);

g.fillOval(225, 175, 50, 50); /l draw head
g.fillRect(245, 225, 10, 125); // draw body

this.drawRightArm(g);
this.drawLeftArm(g);
this.drawRightLeg(g);
this.drawlLeftLeg(g);
}
private void drawRightArm(Graphics g)...
private void drawLeftArm(Graphics g)...
private void drawRightLeg(Graphics g)...
private void drawlLeftLeg(Graphics g)...

E Import javax.swing.*;

. import java.awt.*;

4<5 public class GallowsView extends JComponent
< |

= public GallowsView()... // done
Y public void paintComponent(Graphics g)... /[done
; private void drawBackground(Graphics g)... /[done
T private void drawMountain(Graphics g)... /[done
— private void drawGallows(Graphics Q)... I/l done
© private void drawPerson(Graphics g)... /[done
o

fE_, private void drawRightArm(Graphics g)
5 { Polygon arm = new Polygon();

c arm.addPoint(250, 245);

@ arm.addPoint(300, 295);

Q. arm.addPoint(300, 305);

E arm.addPoint(250, 255);

x arm.addPoint(250, 245);

c : :

o g.fillPolygon(arm);

=}

=

o private void drawLeftArm(Graphics g)...
<CEL private void drawRightLeg(Graphics g)...

private void drawlLeftLeg(Graphics Qg)...
}

Application: Decomposition

We decomposed a difficult problem (painting a hangman scene) into a
series of simpler problems. When the solutions of the small problems
are combined appropriately, we solve the difficult problem.

paintComponent

paintBackground paintGallows paintPerson

paintMountain paintLeftArm paintRightArm

I I
paintLeftLeg paintRightLeg

painting primitives

3.9: Concept Map

may also be
ing
OWed A subproblems
. divides
stepwise Sblem nto
refinement pi understandability,
Antages i, y avoiding errors,
]?e{b s clud easier testing/debugging,
Stl?lct easier modification

understand,

debug, modify
a
g, ‘e fien

”SJOg docod
pSCU. ocodace USQS ﬁatl,lfal

language
fb%
C’X]b/e
Wiy,
parameters
ublic,
pu . are examples access
private modifiers

of

Summary

We have learned:

e how to decompose a complex problem into simpler problems using
stepwise refinement.

e that the solution to each simpler problem should be encoded in a
helper method.

e that stepwise refinement leads to programs that are more likely to
be easy to understand, free from errors, easy to test and debug, and
easy to modify.

e that pseudocode is a mixture of a programming language and
natural language and allows us to think about our solutions at a
higher level of abstraction, and find and fix bugs earlier.

e that there are often several solutions to a problem, perhaps
iInvolving different resources (e.g. additional robots), doing parts of
the task simultaneously using threads, and factoring common parts
of solutions into a superclass.

